2.2 Hydraulik


Die gleichmäßige Druckverteilung in Flüssigkeiten erkannte bereits vor zweihundert Jahren der französische Mathematiker, Physiker und Religionsphilosoph Blaise Pascal. Er prägte den Satz: „Wird gegen eine allseitig abgeschlossene Flüssigkeit ein Druck ausgeübt, so pflanzt sich dieser Druck in der Flüssigkeit nach allen Seiten gleichmäßig fort.“ Mit dieser Erkenntnis schuf Pascal die wissenschaftliche Grundlage für den Bau hydraulischer Pressen und Bremse.


2.2.1 Druck ist Kraft je Flächeneinheit

Die Begriffe Kraft und Druck spielen in der Hydraulik eine wichtige Rolle. Wir haben diese Begriffe bereits im Abschnitt 2.1.2 ausführlich behandelt.

Auch welche Weise macht die Hydraulik aus kleinen Kräften große? Diese Frage wollen wir mit Hilfe der in Abb. 2.2-2 im Längsschnitt schematisch angedeuteten hydraulischen Vorrichtung beantworten. Der kleine Kolben K1 und der große Kolben K2 sind in Zylindern beweglich gelagert. Sie dichten die unter ihnen befindliche Flüssigkeit gegen den Außendruck ab. Die beiden Zylinder sind miteinander durch eine Rohrleitung verbunden. Auf den kleinen Kolben wird von oben eine nach unten gerichtete Kraft ausgeübt,

Um diese Kraftumwandlung zu verstehen, wollen wir eine einfache Beispierechnung durchführen. Wir tun dies in drei Schritten. In Abb. 2.2-2 soll der Durchmesser des kleinen Kolbens 30 mm, der Durchmesser des großen Kolbens 300 mm betragen. Zuerst sollen die Flächen und dann die Kräfte berechnet werden.

1. Frage: Wie groß sind die kreisförmigen Grundflächen der beiden Kolben?


2. Frage: Wir nehmen an, daß der kleine Kolben mit einer Kraft von 70,65 Newton auf die Fluidigkeit drückt. Welcher Druck ergibt sich daraus?

Antwort: Der kleine Kolben hat eine Grundfläche von 7065 Quadratzentimeter. Um herauszubekommen, welche Kraft auf einen Quadratzentimeter wirkt, muß man die Kraft von 70,65 Newton durch die Fläche von 7065 Quadratzentimeter teilen. Das sind 10 Newton je Quadratzentimeter. Diesen Druck übt die Fluidigkeit nun in alle Richtungen aus.

3. Frage: Mit welcher Kraft geht der große Kolben nach oben?

Antwort: Der Druck setzt sich in der Fluidigkeit in alle Richtungen gleichmäßig fort. Dieser Druck beträgt in unserem Falle 10 Newton je Quadratzentimeter. Die Grundfläche des großen Kolbens haben wir mit 706,50 Quadratzentimeter berechnet. Kraft ist die Summe aller „Drücke“. Wir müssen also 10 Newton mit 706,50 malnehmen und erhalten 706,50,00 Newton. Was ist passiert? Die Anfangskraft von 70,65 Newton, die auf den kleinen Kolben wirkt, hat sich auf 706,00 Newton erhebt. Um der besseren Anschaulichkeit willen haben wir bei unseren Berechnungen die kleinen Kraftverluste vernachlässigt, die durch Reibung innerhalb der Fluidigkeit
und an den Zylinderwänden entstehen. Auch das Eigengewicht der Flüssigkeit und die sehr geringe Zusammendrückbarkeit der Flüssigkeit spielen eine Rolle. In der Praxis wäre deshalb das Ergebnis um einen geringen Betrag kleiner.

<table>
<thead>
<tr>
<th>Übungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kreisflächen berechnen bei Angabe des Durchmessers oder des Radius.</td>
</tr>
<tr>
<td>Druck berechnen bei Angabe der Kraft und der Fläche (Druck ist Kraft durch Fläche).</td>
</tr>
<tr>
<td>Kraft berechnen bei Angabe der Fläche und des Drucks (Kraft ist Fläche mal Druck).</td>
</tr>
</tbody>
</table>


2.2.2 Die hydraulische Presse


Abb. 2.2-5: Handhubwagen

Abb. 2.2-6: Hydraulischer Wagenheber

Abb. 2.2-7: Teile eines hydraulischen Wagenhebers

Verstärkt wird die Leistung einer solchen hydraulischen Presse noch durch die Verbindung mit dem in Abb. 2.2-4 angedeuteten einseitigen zweiläufigen Pumpenhebel mit dem Kraftarm a und dem Lastarm b.

Der Kraftarm a sei 100 cm lang und der Lastarm b 1 cm. Nach dem Hebelgesetz wird die Kraft, die auf den Kolben K1 wirkt, verhundertfacht. In unserem Rechenbeispiel gingen wir von einem Druck von 10 N je Quadratzentimeter auf die Flüssigkeit aus. Wenn wir diese 10 N auf das obere Ende des langen Kraftarms wirken lassen, wird durch die Hebewirkung auf den kleinen Kolben ein Druck von 1000 N je Quadratzentimeter ausgeübt. Dieser Druck gibt dem großen Preßkolben eine Kraft von 100 mal 1000 N, also 100 000 Newton. Das sind 100 Kilonewton, kurz 100 kN. Eine Kraft von 10 Newton wurde eine Kraft von 100 000 Newton. Die erhebliche Kraftverstärkung wird deutlich, wenn wir uns klarmachen, daß 10 Newton der Gewichtskraft eines Liters Wasser entsprechen und 100 Kilonewton der Gewichtskraft von etwa 130 erwachsenen Personen.

Übungen
Aus dem Beispiel der Kraftverstärkung ein anderes Beispiel mit anderen Zahlen für die Länge der Hebelarme oder der Kolbenflächen bilden und durchrechnen.

Die erhebliche hydraulische Kraftverstärkung macht es möglich, daß kleine hydraulische Handhubwagen große und schwere Papierstapel anheben können. Abb. 2.2-5 zeigt einen solchen Handhubwagen. Die Zugstange dient als Pumphebel für die unter ihr befindliche kleine hydraulische Presse. In ihren Maßen entspricht diese Zugstange unserem Rechenbeispiel.


Um den Hebekolben wieder abzusenken, öffnet man mit der Knebel durch die Rücklaufleitung. Das Hydrauliköl fließt dann bei 2 in den Kanal hinein und tritt bei 3 nach oben heraus in den Reserveraum.

Abb. 2.2-8: Schema einer Zahnradpumpe
2.2.3 Hydraulische Rotationspumpen


Die Zahnradpumpe erzeugt bei gleichbleibender Drehzahl der Zahnräder einen fast gleichmäßigen Flüssigkeitsstrom. Darin liegt ein Vorteil gegenüber der Kolbenpumpe, die einen stark pulsierenden Flüssigkeitsstrom hervorruft. Äußere in hydraulischen Pressen ist die Zahnradpumpe auch in den automatischen Umlaufschmierern moderner Maschinen und Kraftfahrzeugmotoren anzutreffen.


Abb. 2.2-9: Schema einer Flügelzellenpumpe

Abb. 2.2-10: Schraubspindelpumpe: S im Rohr rotierende Schraubspindel, Z Zufluß, A Abluß
2.2.4 Hydraulische Vorrichtungen in Schneidemaschinen

Gut geeignet ist die Hydraulik für den Antrieb des Preßbalkens in den Schneidemaschinen. Sie bietet hier namentlich die Möglichkeit, den Druck des Preßbalkens auf das Schneidgut feinfühlig und stufenlos einzustellen, und zwar unabhängig von der jeweiligen Höhe des zu schneidenden Stapels.


Der Preßbalken läuft sich durch Antippen des Fußpedals auch als Schnittandeuter mit besonders niedrigem Sicherheitsdruck verwenden. Die Maschine besitzt außerdem einen optischen Schnittandeuter.


2.2.5 Hydraulische Kupplung

Abb. 2.2-15 zeigt das Schneckenradgetriebe des Mes- serantriebes einer Schneidemaschine mit hydraulisch bewegter Kupplung.

Unterhalb des Zahnrades befindet sich die Schnecke, die während ihrer Drehung das Zahnrad und damit die Kurzel des Messeinantriebes bewegt. Ganz links im Bild erkennen wir die untere Hälfte des Antriebs-


Es gibt auch Schneidemaschinen, in denen nicht nur der Preßbalken, sondern auch das Messer hydraulisch herabgezogen wird. Abb. 2.2-16 zeigt den schematischen Aufbau einer solchen Schneidemaschine.

Links und rechts im Grundgestell ist je ein Hydraulikzylinder gelagert. Der linke Hydraulikzylinder bewegt...
2.2 Hydraulik

Abb. 2.2-17: Schema einer Schneidemaschine:
1 Stapelheber, 2 hydraulische Ventile, 3 Hydraulikaggregat, 4 Hebelanschlag, 5 mechanische Anschläge, 6 Hydraulikzylinder, 7 Dichtringe, 8 Führungskolben

Abb. 2.2-18: Stapelheber mit hydraulischem Antrieb


2.2.6 Hydraulische Stapelheber

Moderne Stapelheber können dank der Hydraulik großformatige und schwere Papierstapel anheben.

2.2.7 Der Speicher –
das Schwungrad der Hydraulik

Der hydraulische Speicher besteht aus einem Stahlbehälter, in dem sich eine mit Stickstoff gefüllte elastische Blase befindet. Ein Tellerventil verbindet den
Hydraulik


Abb. 2.2-19: Längsschnitt durch einen hydraulischen Speicher

Abb. 2.2-20: Der Druck des Hydrauliköls hat die mit Stickstoff gefüllte Blase zusammengepreßt

Abb. 2.2-21: Bei einer Störung des Pumpensystems strömmt das Öl aus dem Speicher in die Druckleitung zurück und hält den Druck konstant
2.2 Hydraulik in Buchformpressen


Abb. 2.2-22: Schema der Arbeitsvorgänge in einer Buchformpresse
Abb. 2.2-23: Bedienungsseite der Hydraulik der Buchformpresse

2.2.8 Hydraulik in Buchformpressen


Das Buch kommt flachliegend auf dem Einführband von oben rechts zum Sternanleger. Dieser richtet das Buch so auf, daß es exakt auf dem Rücken stehend vom Transporteur erfaßt und paßgerecht in die Formgebungstation geführt werden kann.

Beim Einfahren des aufrechtstehenden Buchblocks in die Falzfeuer- und Preß-Station drückt ein zur vorgesehenen Buchblockrandung passendes Formstück den Buchblock fest in die Decke. Hin- und hergehende Transportwagen mit Falzfeuerbremschienen transportieren die Bücher durch die Preßstation. Das fertig geformte Buch wird flach auf das Transportband gelegt und weiterbefördert.

Das hydraulische System der Maschine hat zwei voneinander getrennte Druckbereiche. Einen Niederdruck- und einen Hochdruckbereich.


Der große zylindrische Behälter unten links ist ein Speicher. Der Stickstoff in seiner Blase wird mit einem Druck von 30 bar zusammengepreßt. Dieser Speicher ermöglicht eine platzsparende und wirtschaftliche Bauweise. Der Bedarf an hydraulischem Druck ist hoch. Während des Laufes der Maschine müssen die Hydraulikzylinder in jeder Minute vierzigmal gefüllt und entleert werden. Wenn der Speicher nicht vorhanden wäre, müßte eine große Pumpe mit erheblichem Platzbedarf montiert werden. Der Speicher nimmt in den Zeiten geringen Druckbedarfs das Öl der weiterarbeitenden Pumpe auf. Diese Energiereserve er-
gänzt damit in den Belastungsphasen die Pumpenleistung.