6.4.1.5 Klebstoffarten

Einteilung der Klebstoffe
In der Literatur gibt es ganz unterschiedliche Einteilungen der Klebstoffsysteme. Eine der ältesten Unterteilungen ist die in natürliche und synthetische Klebstoffe, womit man die Herkunft der dem Klebstoff zu-grunde liegenden Rohstoffe meint. Da die DIN EN 923 bei Klebstoffen von Nichtmetallen spricht, kann man ferner zwischen organischen (aus Molekülen, deren Gerüst vorwiegend aus Kohlenstoff besteht) und an-organischen, nichtmetallischen Klebstoffen unterscheiden. In DIN EN 923 sind Begriffe definiert, die in der Klebstoffindustrie verwendet werden, sowie solche, die sich in der klebstoffverarbeitenden Industrie auf Klebstoffe beziehen (Quelle und weitere Informationen: https://www.beuth.de/de/norm/din-en-923/106937855).

Klebstoffe auf Basis von Silikonen nehmen in dieser Einteilung eine Sonderstellung ein, da das Basispolymer aus Siloxanketten besteht, allerdings weisen diese Systeme in der Regel Seitenketten aus Kohlenstoffverbindungen auf (siehe Abb. 6.4.9). Siloxane sind chemische Verbindungen mit der allgemeinen Formel R3Si–[O–SiR2]n–O–SiR3, wobei R Wasserstoffatome oder Alkylgruppen sein können. Im Gegensatz zu den Silanen sind die Siliciumatome nicht untereinander, sondern durch genau ein Sauerstoffatom mit ihrem benachbarten Silicium-Atom verknüpft: Si–O–Si.


Abb. 6.4.9: Einteilung der Klebstoffe nach chemischer Basis

Chemisch gesehen liegen alle abgebundenen organischen Klebstoffe als Polymere vor. Daher ist eine weitere häufig benutzte Klassifizierung die Einteilung nach dem Abbindemechanismus (siehe Abb. 6.4.10), der nach der Applikation des Klebstoffs zu seiner Endfestigkeit (Kohäsion) führt. Hierbei wird gewöhnlich zwischen physikalisch und chemisch abbindenden Systemen unterschieden. Chemisch abbindende Systeme werden zudem in Ein- oder Mehrkomponenten-Systeme unterteilt. Zusätzlich gibt es eine Reihe von Klebstoffsystemen, die sowohl physikalisch als auch chemisch abbinden.


Abb. 6.4.10: Einteilung nach Verfestigungsmechanismus

Physikalisch abbindende Klebstoffe
Eine Möglichkeit, bei physikalisch abbindenden Klebstoffen ein gutes Benetzen der Fügeteiloberflächen durch den Klebstoff zu ermöglichen, besteht darin, die Rezepturbestandteile (Polymere, Harze und weitere) in einem Lösemittel zu lösen. Bei Klebstoffen auf Basis stark hydrophiler Rohstoffe kann das Wasser sein, bei vielen synthetischen Polymeren gelingt das nur in organischen Lösemitteln.
Hydrophilie (von altgriechisch ϋδωρhýdor „Wasser“ sowie φίλοςphílos „liebend“ ) bedeutet wasserliebend. Das besagt, dass ein Stoff stark mit Wasser wechselwirkt.

Klebstoffe auf Basis wässriger kolloidaler Lösungen
Polymere, die über viele hydrophile Gruppen verfügen, lassen sich unter bestimmten Voraussetzungen in Wasser kolloidal (molekular-dispers) lösen. Molekulardisperse Systeme sind kolloidale Lösungen mit einer Teilchengröße kleiner als 1 nm. Bei molekulardispersen Systemen handelt es sich um klare und durchsichtige Lösungen, bei denen keine Phasengrenze erkennbar ist. Sie zeichnen sich dadurch aus, dass sie physikalisch stabil und homogen sind, d.h., dass sich die gelösten Ionen und Moleküle nicht durch Filtrieren oder Zentrifugieren vom Lösungsmittel abtrennen lassen (echte Lösung).

Das Adjektiv „kolloidal“ bedeutet „sehr fein verteilt“ beziehungsweise „in feinster Verteilung befindlich“ (in einer Flüssigkeit oder Gas). Es wird hauptsächlich in der Chemie verwendet (Quelle: DocCheck-Flexikon)
Der Begriff Kolloid kommt von den griechischen Worten „kolla“ – „Leim“ – und „eidos“ – „Form, Aussehen“. Bei einem Kolloid handelt es sich um ein System aus Clustern (Teilchen mit bis zu 50 000 Atome) oder um kleine Festkörper (Teilchen mit > 50 000 Atome), die innerhalb eines Mediums fein verteilt vorliegen. Die Teilchen dieser so genannten kolloid-dispersen Phase weisen in der Regel Größenordnungen von 1 bis 1000 Nanometer in mindestens einer Dimension auf. Das Medium, in diesem Fall Wasser, in dem diese Teilchen verteilt sind, bezeichnet man als Dispersionsmedium. Aus einer Vielzahl der in der Natur vorkommenden Polymere, wie Zellulose, Stärke oder Proteine, lassen sich unter bestimmten Bedingungen solche kolloidale Lösungen herstellen. Es gibt jedoch auch einige synthetisch hergestellte Polymere, die so hydrophil sind, dass sie solche Lösungen ermöglichen. Da das Wasser aufgrund des hydrophilen Charakters der Polymere relativ fest gebunden ist, wird es in der Klebfuge nur langsam wieder abgegeben. Klebstoffe, die in Form von wässrigen kolloidalen Systemen vorliegen, besitzen daher relativ lange Abbindezeiten.

Wässrige, kolloidale Klebstoffe auf Basis synthetischer Polymere
Obwohl die weitaus überwiegende Zahl der synthetisch hergestellten Polymere in Wasser nicht kolloidal löslich ist, gibt es einige Typen, die sich in Wasser kolloidal lösen. Zu diesen Polymeren gehören Po-lyvinylalkohole, das Polyvinylpyrolidon, verschiedene Polyvinylether wie der Polyvinylmethylether und Harnstoff-Formaldehyd-Harze.

Polyvinylalkohol (Kurzzeichen PVOH, PVA, oder PVAL) ist ein – unter bestimmten Bedingungen – wasserlösliches synthetisches Polymer (Kunststoff) (Quelle: https://www.chemie.de/lexikon/Polyvinylalkohol.html).
Polyvinylpyrrolidon, auch Polyvidon oder Povidon, ist ein Polymer der Verbindung Vinylpyrrolidon. PVP ist ein hygroskopisches, amorphes Pulver mit weißer bis hellgelber Farbe (Quelle: https://de.wikipedia.org/wiki/Polyvinylpyrrolidon).
Polyvinylether, -[CH2-CH(OR) -]n, Thermoplaste, die durch Polymerisation von Methyl-, Ethyl- oder Isopropylvinylether erhalten werden (Quelle: https://www.spektrum.de/lexikon/chemie/polyvinylether/7383).

Mengenmäßig am wichtigsten sind die Polyvinylalkohole; diese sind im Gegensatz zu den meisten anderen Vinylpolymeren jedoch nicht direkt aus dem entsprechenden Monomer herzustellen, da der monomere Vinylalkohol (Enol) nicht stabil ist (Umlagerung in Acetaldehyd). Polyvinylalkohol wird daher durch teilweise oder vollständige Hydrolyse der Acetylgruppen von Polyvinylacetat mit Natriumhydroxid als Katalysator hergestellt. Polyvinylalkohol-Pulver können durch Einstreuen in Wasser und Rühren bei 90°C gelöst werden. Mit abnehmendem Polymerisations- und Hydrolysegrad nimmt die Lösegeschwindigkeit in Wasser zu. Die Viskosität der resultierenden Lösungen hängt von der Molaren Masse, dem Hydrolysegrad, der Konzentration und der Temperatur ab.

Die Molare Masse (Formelzeichen M), ist der Quotient aus der Masse einer Substanz und der Stoffmenge dieser Substanz. Die Einheit ist Gramm pro Mol (Einheitenzeichen: g/mol) oder häufig auch Kilogramm pro Kilo-mol (Einheitenzeichen: kg/kmol). Das Mol (Einheitenzeichen: mol) ist die SI-Basiseinheit der Stoffmenge. Wichtig ist das Mol für Mengenangaben bei chemischen Reaktionen.
SI: Das Internationale Einheitensystem, abgekürzt SI (von frz.: Système international d’unités), ist das auf dem internationalen Größensystem (ISQ) basierende Einheitensystem. Dieses 1960 eingeführte metrische Einheitensystem ist heute das weltweit am weitesten verbreitete Einheitensystem für physikalische Größen. Quelle: https://www.chemie.de/lexikon/Internationales_Einheitensystem.html

Borsäure kann als Verdickungsmittel eingesetzt werden. Wässrige, kolloidale Klebstoffe auf Basis synthetischer Polymere werden für verschiedene Verpackungsanwendungen, zum Beispiel bei der Herstellung von Verpackungshülsen, eingesetzt.

Klebstoffe auf Basis von in organischen Lösemitteln gelösten Polymeren
Als lösemittelbasierende Klebstoffsysteme bezeichnet man Systeme, in denen das thermoplastische Basispolymer (und alle anderen Komponenten) in einem organischen Lösemittel (beispielsweise Ethylacetat oder Toluol) gelöst vorliegt und als Lösung aufgebracht wird. Der Lösemittelgehalt dieser Klebstoffe kann bis zu 85 Prozent betragen. Da sich eine Vielzahl von Rohstoffen als Lösemittelklebstoffe verarbeiten lassen, können Klebstoffe mit unterschiedlichsten Leistungsmerkmalen hergestellt werden. Das Fügen findet häufig statt, nachdem – besonders bei lösemittelundurchlässigen Substraten – während einer so genannten Mindesttrockenzeit nach dem Klebstoffauftrag ein Teil des Lösemittels verdunstet ist, aber noch genügend Lösemittel in der Klebschicht vorhanden ist, um eine Benetzung der zweiten Fügeteiloberfläche zu gewährleisten. Selbst bei lösemitteldurchlässigen Fügeteilen sollte, besonders bei Typen mithohem Lösemittelgehalt, diese Mindesttrockenzeit vor dem Fügen eingehalten werden.

Damit es zu einer zufriedenstellenden Klebung kommen kann, muss das zweite Fügeteil anschließend innerhalb der offenen Zeit zugeführt werden. Durch das Verdunsten (Trocknen) der Lösemittel bindet der Klebstoff ab – das heißt: Zunächst steigt seine Viskosität an. Die Verfestigung erfolgt durch die Ausbildung physikalischer Wechselwirkungen – dazu zählen Van-der-Waals-Wechselwirkungen sowie Verschlaufungen zwischen den Polymerketten. Lösemittelbasierende Klebstoffsysteme verfügen aufgrund der geringen Feststoffgehalte häufig nur über eine geringe Anfangsfestigkeit, die langsam bis zur Handlingsfestigkeit und anschließend bis zur Endfestigkeit ansteigt, wobei jedoch im Allgemeinen keine hohen Zugscherfestigkeiten erreichbar sind. Aufgrund ihrer thermoplastischen Natur verfügen sie ferner nur über eine eingeschränkte Formbeständigkeit bei höheren Temperaturen und neigen unter Belastung zum „Kriechen“. Darüber hinaus reagieren sie naturgemäß empfindlich auf Lösemittel.
Handlingsfestigkeit ist ein Fachbegriff, der sinngleich mit „Mindestfestigkeit“ oder „Weiterbearbeitungsfestigkeit“ ist. 

Mit Van-der-Waals-Kräften, benannt nach dem niederländischen Physiker Johannes Diderik van der Waals (1837–1923), bezeichnet man die relativ schwachen nicht-kovalenten Wechselwirkungen zwischen Atomen oder Molekülen, deren Wechselwirkungsenergie mit etwa der sechsten (!) Potenz des Abstandes abfällt. Die Atombindung (auch kovalente Bindung, Elektronenpaarbindung oder homöopolare Bindung) ist eine Form der chemischen Bindungen und ist als solche für den festen Zusammenhalt von Atomen in vielen chemischen Verbindungen verantwortlich. Quelle: https://www.chemie.de/lexikon/Van-der-Waals-Kräfte.html

Lösemittelbasierende Klebstoffsysteme zeigen gute Benetzungseigenschaften auf vielen Substraten, vor allem auf lösemitteldurchlässigen Fügeteilen. Bei verschiedenen thermoplastischen Kunststoffen (zum Beispiel PVC) können sie auch zum Diffusionskleben (siehe Abb. 6.4.11) (Quell- beziehungsweise Kaltschweißen) verwendet werden. Dabei werden beide Klebflächen mit dem Lösemittelklebstoff bestrichen, wobei das eingesetzte Lösemittel imstande ist, die Oberfläche der Fügeteile anzulösen. Nach kurzer Einwirkzeit werden die beiden Fügeteile unter Druck gefügt, wodurch sich die durch das Lösemittel freigelegten Polymerketten der angelösten Oberfläche einander durchdringen, „neue“ Van-der-Waals-Wechselwirkungen bilden und miteinander verschlaufen. Nach Entweichen des Lösemittels entsteht so nach einiger Zeit eine Verbindung, die rein auf Kohäsionskräften beruht.


Abb. 6.4.11: Diffusionskleben schematisch

Bewertung: 
0
Bisher keine Bewertung