10.5.3 Maschinen für Kunststoffsäcke

Geschweißte und geklebte Foliensäcke

Etwa ab Mitte der 1950er-Jahre wurden PE-Folien auch zu Industriesäcken verarbeitet. Da sowohl Polymertechnologie als auch Extrusions-Verfahrenstechnik noch in den Kinderschuhen steckten, Säcke aber vergleichsweise hohen Belastungen ausgesetzt sind, kamen hierfür relativ dicke Folien im Bereich von 200-300 μm zur Anwendung, für die man den Begriff „Schwergutfolien“ prägte (μm = Mikrometer = 10⁻⁶Meter). Bei den ersten Säcken handelte es sich um oben offene, aus Schlauchmaterial gefertigte Flachsäcke, deren Bodennaht thermisch geschweißt wurde. Demzufolge bestanden die ersten Foliensackmaschinen aus einer Abwicklung für die Schlauchbahn, einem Querschneider, einer Bodennaht-Schweißstation und einer einfachen Ablage zur manuellen Abnahme der Sackpakete.

Später ergänzte man diese Maschinen um eine Seitenfaltenbildung, bei der die Schlauchfolie vertikal so durch ein Gestell geführt wurde, dass man ein Innenwerkzeug in den Schlauch einsetzen und zusammen mit außen angebrachten Formblechen die Seitenfalten einlegen konnte. Oben offene Flach- und Seitenfaltensäcke mit Bodennaht fanden für eine Vielzahl von Produkten Verwendung. Dazu zählten Salz, chemische Produkte, Düngemittel, Gartenprodukte oder Viehfutter. Der Verschluss erfolgte meist durch Abnähen.

Zu Beginn der 1960er-Jahre entwickelte der Maschinenhersteller Windmöller & Hölscher zusammen mit dem Bayer-Konzern ein Verfahren zur dauerhaften Verklebung von Kunststoff-Folien. Es basierte auf einem reaktiv abbindenden Zwei-Komponenten-Klebstoff, der zuvor bereits in der Schuhindustrie erfolgreich eingesetzt worden war. Er bestand aus Polyurethan-Festharz in Flockenform, das mit einem handelsüblichen Lösemittel verflüssigt und durch Zugabe von Isocyanat vernetzt wurde.

Polyurethanharze bilden eine Brücke zwischen der Kategorie der Duroplaste und der Elastomere, denn sie lassen sich durch die Wahl der Ausgangsstoffe stark in ihren Eigenschaften variieren, von zäh und hartelastisch bis gummielastisch. Ohne Zusatz von Farbpigmenten erscheinen Polyurethane honigfarben und transluzent. Sie weisen gute Beständigkeit gegen viele Lösungsmittel, Salzlösungen, schwache Säuren sowie Laugen auf und haften gut auf den meisten Untergründen. (Quelle: http://www.metalltechnik-lexikon.de/polyurethanharze-pur/)

In einer Synthese aus diesem Klebstoffsystem und der Technologie der Papiersack-Bodenleger entstand in der Folge der Ventilbodenleger AD Plastic für Kreuzboden-Ventilsäcke aus PE-Folien. Die Maschine zielte insbesondere auf Produktsegmente der chemischen Industrie, wie Kunststoffgranulate, Düngemittel und chemische Grundstoffe. Die Nachfrage speiste sich zum einen aus dem Wunsch der chemischen Industrie, eigene Rohstoffe für die Sackherstellung einzusetzen, und andererseits aus dem höheren Produktschutz, den Folie gegenüber Papier bot.


Abb. 10.5.3.1: Ventilbodenleger AD Plastic (W&H)

In zwei wichtigen Details beschritt die AD Plastic Neuland: Zum einen musste das Problem überwunden werden, dass Folien unpolare Oberflächen aufweisen, die eine Benetzung und damit eine erfolgreiche Verklebung verhindern. Ein geeignetes Verfahren für eine Veränderung der Oberflächen-Beschaffenheit ist die Corona-Vorbehandlung, bei der die Folie eine elektrische Hochspannungs-Entladung durchläuft. Aus diesem Grund wurde die AD Plastic mit Corona-Vorbehandlungsanlagen für alle Folienbahnen ausgerüstet.

Die Corona-Vorbehandlung wird eingesetzt, um die Haftung von Lacken und Farben auf Polyolefinen, wie Polypropylen und Polyethylen, zu gewährleisten beziehungsweise überhaupt erst zu ermöglichen. Bei der Coronavorbehandlung wird die zu behandelnde Oberfläche für eine kurze Zeit einer elektrischen Koronaentladung ausgesetzt. An der Oberfläche entstehen polare Moleküle, an die sich beispielsweise Druckerfarbe, Lacke oder Klebstoffe anbinden können. 

Zum anderen musste die Klebstoffauftragstechnik an das oben beschriebene Klebstoffsystem angepasst werden. Anstatt wie im Papierbodenleger ein Bodenklebstoffmuster auf den geöffneten Sack zu drucken, erfolgte bei der AD Plastic der Auftrag bereits vor der Bodenöffnung, und zwar streifenförmig parallel zur Bodenkante des Schlauches auf seiner Ober- und Unterseite.


Abb. 10.5.3.2: Prinzip der Schlauchbeleimung. Die endgültige Verklebung des Bodens erfolgt erst mit dem Auflegen des Bodendeckblattes.

Darauf folgte – ebenfalls noch vor der Öffnung – die Trocknung des Klebstoffs durch Warmluft, um das Lösemittel auszutreiben. In gleicher Weise wurden Ventil- und Bodendeckblattzettel beklebt und getrocknet, bevor sie auf den Sack gelangten. Durch das Auflegen der Ventil- und Deckblatt-Zettel kamen ihre Klebstoff-Schichten in Kontakt mit dem Klebstoff des Schlauches. Starkes Anpressen sorgte für eine Anfangshaftung, die durch etwa zwei- bis dreitägiges Aushärten permanent wurde.

Produzierten die ersten AD Plastic noch vom Rotationsanleger, so setzte sich bald das Inline-Konzept durch, bei dem sie eine Schlauchfolienabwicklung, einen rotativ arbeitenden Querschneider und eine Schlauchdrehstation erhielten. Durch zusätzliche Erweiterung um eine Schlauchbildung sowie gegebenenfalls eine zweite Abwicklung konnten damit auch Flachfolien und Verbunde verarbeitet sowie komplex aufgebaute zweilagige Spezialsäcke produziert werden. Die Einführung eines beheizten Messers im Querschneider erlaubte später sogar die Verarbeitung von beschichtetem beziehungsweise kaschiertem Bändchengewebe.

Das Bändchengewebe wird aus Polypropylen (PP) oder HDPE (englisch: High Density Polyethylen) hergestellt. Alternativ wird es deshalb auch als PP-Gewebe oder HDPE-Gewebe bezeichnet. Es zeichnet sich durch sehr hohe Reißfestigkeit aus. Daher kommt es zum Beispiel auch bei Big Packs, die tonnenschwere Lasten transportieren können, zum Einsatz. Polypropylen als Grundstoff für die Fasern ist bei Raumtemperatur gegen Fette und fast alle organischen Lösungsmittel beständig, abgesehen von starken Oxidationsmitteln. Nichtoxidierende Säuren und Laugen können in Behältern aus PP gelagert werden.


Abb. 10.5.3.3: Ventilsack für Zement aus Bändchengewebe (Mehr zum Thema Bändchen- und Gewebeherstellung siehe Abschnitt „Bändchengewebe")

 

Bewertung: 
0
Bisher keine Bewertung